Sparse Representation of White Gaussian Noise with Application to L0-Norm Decoding in Noisy Compressed Sensing
نویسنده
چکیده
The achievable and converse regions for sparse representation of white Gaussian noise based on an overcomplete dictionary are derived in the limit of large systems. Furthermore, the marginal distribution of such sparse representations is also inferred. The results are obtained via the Replica method which stems from statistical mechanics. A direct outcome of these results is the introduction of sharp threshold for `0-norm decoding in noisy compressed sensing, and its mean-square error for underdetermined Gaussian vector channels.
منابع مشابه
Non-Convex Compressed Sensing from Noisy Measurements
This paper proposes solution to the following non-convex optimization problem: min || x || p subject to || y Ax || q Such an optimization problem arises in a rapidly advancing branch of signal processing called ‘Compressed Sensing’ (CS). The problem of CS is to reconstruct a k-sparse vector xnX1, from noisy measurements y = Ax+ , where AmXn (m<n) is the measurement matrix and mX1 is additive no...
متن کاملMean-square analysis of the gradient projection sparse recovery algorithm based on non-uniform norm
With the previously proposed non-uniform norm called lN -norm, which consists of a sequence of l1-norm or l0-norm elements according to relative magnitude, a novel lN-norm sparse recovery algorithm can be derived by projecting the gradient descent solution to the reconstruction feasible set. In order to gain analytical insights into the performance of this algorithm, in this letter we analyze t...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملNoisy 1-Bit Compressed Sensing Embeddings Enjoy a Restricted Isometry Property
We investigate the sign-linear embeddings of 1-bit compressed sensing given by Gaussian measurements. One can give short arguments concerning a Restricted Isometry Property of such maps using Vapnik-Chervonenkis dimension of sparse hemispheres. This approach has a natural extension to the presence of additive white noise prior to quantization. Noisy one-bit mappings are shown to satisfy an RIP ...
متن کاملImage Super-Resolution Based on Sparsity Prior via Smoothed l0 Norm
In this paper we aim to tackle the problem of reconstructing a high-resolution image from a single low-resolution input image, known as single image super-resolution. In the literature, sparse representation has been used to address this problem, where it is assumed that both low-resolution and high-resolution images share the same sparse representation over a pair of coupled jointly trained di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1104.2215 شماره
صفحات -
تاریخ انتشار 2011